Sötét energia
A Wikipédiából, a szabad enciklopédiából.
A kozmológiában a sötét energia az a feltételezett energiaforma, mely az egész világegyetemben jelen van, és erős negatív nyomást fejt ki. Az általános relativitáselmélet szerint a negatív nyomás nagy távolságokon a gravitációs vonzást semlegesíti. Ez jelenleg a legelfogadottabb elmélet annak a megfigyelésnek a magyarázatára, hogy a világegyetem gyorsulva tágul.
Két lehetőséget ismerünk a sötét energia magyarázatára. Az egyik a kozmológiai állandó, egy konstans energiasűrűség, amely egyenletesen tölti ki a teret, a másik a kvintesszencia, egy dinamikus erőtér, melynek az energiája térben és időben változhat. A kettő közötti különbségtételhez nagyon pontosan kell mérni a világegyetem tágulását, hogy megértsük, hogyan változik a tágulás sebessége az időben.
Ha a kozmológia standard elméletéhez hozzáadjuk a kozmológiai konstanst, akkor a Lambda-CDM modellhez jutunk. Ez a modell nagyon jól egyezik a csillagászati megfigyelésekkel.
A sötét energia kifejezés Michael Turner kozmológustól származik.
Tartalomjegyzék |
[szerkesztés] Bizonyítékok a sötét energia létezésére
Az 1990-es évek végén az Ia típusú szupernóvák megfigyeléséből arra következtettek, hogy a világegyetem tágulása gyorsul. Az elmúlt pár évben ezeket a megfigyeléseket különböző források is megerősítették: a mikrohullámú kozmikus háttérsugárzás, a gravitációs lencsék, a világegyetem kora, a ősrobbanás során fellépő nukleoszintézis (atommagkialakulás), a világegyetem nagy skálájú szerkezete, a Hubble-állandó mérései, valamint a szupernóvák pontosított mérései.
Az Ia típusú szupernóvák szolgáltatják a legközvetlenebb bizonyítékot a sötét energiára. A távolodó égitestek sebességét a színképvonalaik vöröseltolódásából meghatározhatjuk. Egy égitest Földtől való távolságának meghatározása a csillagászat egyik legnehezebb feladata. Standard gyertyákat kell találni: olyan égitesteket, melyeknek fényessége ismert, így a kérdéses égitest fényességéből a távolsága meghatározható. Standard gyertyák nélkül a Hubble-törvény vöröseltolódás-távolság kapcsolata nem mérhető. Az Ia típusú szupernóvák a legjobb standard gyertyák a kozmológiai megfigyelések számára, mert nagyon fényesek, és csak akkor robbannak fel, ha egy öreg fehér törpe csillag eléri az elméletileg pontosan meghatározott Chandrasekhar-határt. Ha a szupernóvák sebességét felrajzoljuk a távolságuk függvényében, akkor megkaphatjuk, hogyan változott a tágulás mértéke a világegyetem történetében. Ezek a megfigyelések azt mutatják, hogy a világegyetem tágulása nem lassul, ahogy az egy olyan univerzumtól elvárható lenne, amelyben az anyag van túlsúlyban, hanem rejtélyes módon gyorsulva tágul. Ezt a megfigyelést egyfajta negatív nyomású energia feltételezésével lehet magyarázni, melyet sötét energiának neveztek el.
A sötét energia létezése bármelyik formájában megoldaná az úgynevezett „hiányzó tömeg” problémát is. A ősrobbanáskor lezajlott nukleoszintézis elmélete magyarázza meg, hogy milyen módon és milyen arányban alakultak ki a könnyű elemek, mint a hélium, deutérium és a lítium a korai univerzumban. A kozmosz nagy skálájú szerkezetének elmélete magyarázza meg, hogy milyen módon alakult ki a világegyetem szerkezete, a csillagok, kvazárok, galaxisok és a galaxishalmazok. Mindkét elmélet azt sugallja, hogy a barionos anyag és a hideg sötét anyag csak a kritikus sűrűség mintegy 30%-a. A kritikus sűrűség az a sűrűség, melynél a világegyetem alakja sík (ez nem azt jelenti, hogy két dimenziós, hanem, hogy görbülete nulla). A mikrohullámú kozmikus háttérsugárzás WMAP műholdak általi mérése szerint a világegyetem nagyon közel van a síkhoz. Eszerint tehát a fennmaradó 70%-ot valamilyen energiának szolgáltatnia kell.