See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Forme prénexe - Wikipédia

Forme prénexe

Un article de Wikipédia, l'encyclopédie libre.

Une formule de la logique du premier ordre est en forme prénexe si tous ses quantificateurs ( \forall et \exists) apparaissent à gauche dans cette formule. C’est-à-dire, G est en forme prénexe ssi G=Q_1 x_1 Q_2 x_2 ... Q_n x_n G^{\prime} avec Q_i \in \{\forall, \exists\}.

Toutes les formules du premier ordre sont logiquement équivalentes à une formule en forme prénexe.


Pour mettre une formule logique en forme prénexe, on peut utiliser les règles suivantes:

  1. \lnot \forall x F \Rightarrow \exists x \lnot F
  2. (\forall x F) \land G \Rightarrow \forall x (F \land G)
  3. (\forall x F) \lor G \Rightarrow \forall x (F \lor G)
  4. (\forall x F)\supset G \Rightarrow \exists x(F \supset G)
  5. G \land (\forall x F) \Rightarrow \forall x (G \land F)
  6. G \lor (\forall x F) \Rightarrow \forall x (G \lor F)
  7. G \supset (\forall x F) \Rightarrow \forall x (G \supset F)
  8. \lnot \exists x F \Rightarrow \forall x \lnot F
  9. (\exists x F) \land G \Rightarrow \exists x (F \land G)
  10. (\exists x F) \lor G \Rightarrow \exists x (F \lor G)
  11. (\exists x F)\supset G \Rightarrow \forall x(F \supset G)
  12. G \land (\exists x F) \Rightarrow \exists x (G \land F)
  13. G \lor (\exists x F) \Rightarrow \exists x (G \lor F)
  14. G \supset (\exists x F) \Rightarrow \exists x (G \supset F)

La variable x ne doit avoir aucune occurrence libre dans G (voir Calcul des prédicats). Sinon, utiliser un renommage de x en x'.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -