Neljännen asteen yhtälön ratkaisukaava
Wikipedia
Neljännen asteen yhtälön ratkaisukaava on kaava, jolla voidaan ratkaista polynomiyhtälöt, jotka ovat muotoa ax4 + bx3 + cx2 + ex + f = 0, missä .
[muokkaa] Kaavan johdon idea
Neljännen asteen yhtälön ratkaisukaava on varsin pitkä, joten esitetään vain idea, jolla kaavaan päädytään. Aluksi yhtälöön tehdään sopiva muotoa x = y + g oleva sijoitus, jolloin kolmannen asteen termin kerroin häviää. Lisätään nyt yhtälöön puolittain termejä siten, että yhtälön vasen puoli voidaan tulkita olevan neliö muotoa (x2 + g)2. Lisätään tämän jälkeen puolittain yhtälön molemmille puolille termejä siten, että yhtälön vasen puoli voidaan tulkita neliöksi (x2 + g + y)2, missä y on tuntematon suure. Kiinnitetään nyt y:n arvo sellaiseksi, että yhtälön oikealla puolella oleva trinomi tulee neliöksi. Tämä saadaan, kun ratkaistaan yhtälön oikealla puolella olevan lausekkeen nollakohdat y:n suhteen. Tämä on mahdollista, sillä saatu yhtälö on kolmatta astetta, ja sille on kehitetty ratkaisukaava. Nyt y:n arvo voidaan sijoittaa alkuperäiseen yhtälöön, ja ottaa yhtälöstä puolittain neliöjuuri. Saatu yhtälö on toista astetta, joten ratkaisemalla tämä yhtälö saadaan selville alkuperäisen yhtälön juuret.
[muokkaa] Katso myös