See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Teorema de Sarkovskii - Wikipedia, la enciclopedia libre

Teorema de Sarkovskii

De Wikipedia, la enciclopedia libre

Sea una aplicación continua f : RR. Si esta función tiene un punto periódico de período k, entonces tiene puntos periódicos de todos los períodos inferiores a k según el orden "<<" siguiente:

1 << 2 << 4 << 8 << ... << 2n·7 << 2n·5 << 2n·3 << ... << 2·7 << 2·5 << 2·3 << ... 9 << 7 << 5 << 3

Este teorema es óptimo, es decir, si m << k según el orden precedente, existen aplicaciones continuas con puntos periódicos de periodo m pero sin punto periódico de período k. En particular, una función que presenta un punto x periódico de orden tres, es decir tal que:

fofof(x) = x


donde o es la composición de las funciones, entonces presentará puntos periódicos de cualquier orden:

f n(y) = fofof ...of(y) = y.


Se dice que el periodo tres implica el caos, y esta propiedad es fundamental en la teoría del caos.
Este corolario recibe el nombre de Teorema de Li y Yorke, matemáticos que redescubrieron en Estados Unidos parte del teorema ruso, que había pasado totalmente inadvertido en Occidente.

El ejemplo fundamental es f(x)= a·x·(1 - x), con x en el intervalo [ 0; 1], y a en [0; 4]. Cuando a crece de 0 a 4, va apareciendo puntos periódicos de orden 2, luego 4, luego 8, 16, ... y finalmente 3.

imagen:Diagrama_de_bifurcación.png

En las abcisas está el parámetro a. El período 3 aparece para a algo mayor que 3,8, justo al salir de la zona caótica (en gris).

El teorema utiliza el que R es totalmente ordenado y unidimensional, no se aplica a los números complejos:
La función f :CC definida por f(z) = e2iπ/3·z es tal que todos los puntos del plano son periódicos de orden 3, pero de ningún otro orden (excepto 0 que es de orden 1) - f es una rotación de ángulo 120 grados o 2·π/3 radianes y no existe equivalentes de las rotaciones en una dimensión.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -