See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Grupo profinito - Wikipedia, la enciclopedia libre

Grupo profinito

De Wikipedia, la enciclopedia libre

En matemática, un grupo pro-finito G es un grupo que, en cierto modo, está muy "próximo" a ser finito.

Tabla de contenidos

[editar] Definición

Formalmente, un grupo pro-finito es límite inverso de grupos finitos. En concreto, G es pro-finito si existe un conjunto dirigido I, una colección de grupos finitos \{H_i\}_{i \in I}, y homomorfismos \alpha_{ij}: H_j \to H_i para cada par de elementos i,j \in I con i \leq j, que satisfacen

  • αii = 1 para todo i \in I
  • \alpha_{ij} \circ \alpha_{jk} = \alpha_{ik} para todos los i,j,k \in I con i \leq j \leq k

con la propiedades:

\lim\,H_i := \{ (h_i)\in\prod_{i\in I} H_i \ |\ \alpha_{ij}(h_j)=h_i, \ \forall i\leq j \}, con la multiplicación componente a componente.

Es posible verlos por tanto como grupos topológicos de manera natural: cada uno de los grupos finitos está dotado de la topología discreta, y como G es un subconjunto del producto de aquéllos espacios discretos, hereda cierta topología que lo convierte en un grupo topológico.

[editar] Ejemplos

Cada grupo finito es trivialmente pro-finito. Los ejemplos más importantes de grupos pro-finitos son los enteros p-ádicos. La Teoría de Galois de las extensiones de cuerpos de grado infinito hace surgir de forma natural los grupos de Galois que resultan ser pro-finitos. Los grupos fundamentales que son tratados por la Geometría algebraica son también pro-finitos, debido a que, hablando rápidamente, el álgebra sólo puede 'ver' recubrimientos finitos de una variedad algebraica.

[editar] Propiedades

Cada grupo pro-finito es un Espacio de Hausdorff compacto: ya que todos los espacios finitos discretos son de Hausdorff, su producto será un espacio compacto de Hausdorff por el Teorema de Tychonoff. G es un conjunto cerrado de este producto y por tanto es también compacto y de Hausdorff.

Todo grupo pro-finito es totalmente disconexo y más aún: un grupo topológico es pro-finito si y solamente si es Hausdorff, compacto y totalmente disconexo.

[editar] Grupos Ind-finitos

Existe la noción de grupo ind-finito, que es la dual de grupo pro-finito. Será por tanto un grupo G que es el límite directo de grupos finitos. La terminología usual es sin embargo diferente: un grupo G es llamado localmente finito si cada subgrupo finitamente generado es finito. De hecho esto es equivalente a ser ind-finito.

Aplicando la dualidad de Pontryagin, uno puede ver que los grupos abelianos pro-finitos son los duales de los grupos abelianos discretos localmente finitos. Estos últimos son precisamente los grupos de torsión abelianos.

[editar] Véase también

  • Grupo localmente cíclico
En otros idiomas


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -