ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Nagata's conjecture on curves - Wikipedia, the free encyclopedia

Nagata's conjecture on curves

From Wikipedia, the free encyclopedia

In mathematics, the Nagata conjecture on curves governs the minimal degree required for a plane algebraic curve to pass though a collection of very general points with prescribed multiplicity. Nagata arrived at the conjecture via work on the 14th problem of Hilbert, which asks whether the invariant ring of a linear group action on the polynomial ring k[x_1, \ldots x_n] over some field k is finitely-generated. Nagata published the conjecture in a 1959 paper in the American Journal of Mathematics, in which he presented a counterexample to Hilbert's 14th problem.

More precisely suppose p_1,\ldots,p_r are very general points in the projective plane P2 and that m_1,\ldots,m_r are given positive integers. The Nagata conjecture states that for r > 9 any curve C in P2 that passes through each of the points pi with multiplicity mi must satisfy

\mbox{deg} C > {\sum_{i=1}^r m_i \over \sqrt{r}}

The only case when this is known to hold is when r is a perfect square (i.e. is of the form r = s2 for some integer s), which was proved by Nagata. Despite much interest the other cases remain open. A more modern formulation of this conjecture is often given in terms of Seshadri constants and has been generalised to other surfaces under the name of the Nagata-Biran conjecture.

The condition r > 9 is easily seen to be necessary. The cases r > 9 and r \le 9 are distinguished by whether or not the anti-canonical bundle on the blowup of P2 at a collection of r points is nef.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -