ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Minkowski-Steiner formula - Wikipedia, the free encyclopedia

Minkowski-Steiner formula

From Wikipedia, the free encyclopedia

In mathematics, the Minkowski-Steiner formula is a formula relating the surface area and volume of compact subsets of Euclidean space. More precisely, it defines the surface area as the "derivative" of enclosed volume in an appropriate sense.

The Minkowski-Steiner formula is used, together with the Brunn-Minkowski theorem, to prove the isoperimetric inequality. It is named after the Lithuanian mathematician Hermann Minkowski.

Contents

[edit] Statement of the Minkowski-Steiner formula

Let n \geq 2, and let A \subsetneq \mathbb{R}^{n} be a compact set. Let μ(A) denote the Lebesgue measure (volume) of A. Define the quantity \lambda (\partial A) by the Minkowski-Steiner formula

\lambda (\partial A) := \liminf_{\delta \to 0} \frac{\mu \left( A + \overline{B_{\delta}} \right) - \mu (A)}{\delta},

where

\overline{B_{\delta}} := \left\{ x = (x_{1}, \dots, x_{n}) \in \mathbb{R}^{n} \left| | x | := \sqrt{x_{1}^{2} + \dots + x_{n}^{2}} \leq \delta \right. \right\}

denotes the closed ball of radius δ > 0, and

A + \overline{B_{\delta}} := \left\{ a + b \in \mathbb{R}^{n} \left| a \in A, b \in \overline{B_{\delta}} \right. \right\}

is the Minkowski sum of A and \overline{B_{\delta}}, so that

A + \overline{B_{\delta}} = \left\{ x \in \mathbb{R}^{n} \left| | x - a | \leq \delta \mbox{ for some } a \in A \right. \right\}.

[edit] Remarks

[edit] Surface measure

For "sufficiently regular" sets A, the quantity \lambda (\partial A) does indeed correspond with the (n − 1)-dimensional measure of the boundary \partial A of A. See Federer (1969) for a full treatment of this problem.

[edit] Convex sets

When the set A is a convex set, the lim-inf above is a true limit, and one can show that

\mu \left( A + \overline{B_{\delta}} \right) = \mu (A) + \lambda (\partial A) \delta + \sum_{i = 2}^{n - 1} \lambda_{i} (A) \delta^{i} + \omega_{n} \delta^{n},

where the λi are some continuous functions of A and ωn denotes the measure (volume) of the unit ball in \mathbb{R}^{n}:

\omega_{n} = \frac{2 \pi^{n / 2}}{n \Gamma (n / 2)},

where Γ denotes the Gamma function.

[edit] Example: volume and surface area of a ball

Taking A = \overline{B_{R}} gives the following well-known formula for the surface area of the sphere of radius R, S_{R} := \partial B_{R}:

\lambda (S_{R}) = \lim_{\delta \to 0} \frac{\mu \left( \overline{B_{R}} + \overline{B_{\delta}} \right) - \mu \left( \overline{B_{R}} \right)}{\delta}
= \lim_{\delta \to 0} \frac{[ (R + \delta)^{n} - R^{n} ] \omega_{n}}{\delta}
= nRn − 1ωn,

where ωn is as above.

[edit] References

  • Dacorogna, Bernard (2004). Introduction to the Calculus of Variations. London: Imperial College Press. ISBN 1-86094-508-2. 
  • Federer, Herbert (1969). Geometric Measure Theory. New-York: Springer-Verlag. 
Languages


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -