ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Erdős–Burr conjecture - Wikipedia, the free encyclopedia

Erdős–Burr conjecture

From Wikipedia, the free encyclopedia

Let G be a simple graph. It follows from Ramsey's theorem that there exists a least integer r(G), the Ramsey number of G, such that any complete graph on at least r(G) vertices whose edges are coloured red or blue contains a monochromatic copy of G.

In 1973, Erdős and Burr made the following conjecture:

For every integer p there exists a constant cp so that any graph G on n vertices in which every subgraph has a vertex of maximum degree at most p, has its Ramsey number bounded by r(G)\leq c_p n

This conjecture has been settled in some special cases:

  • for p-arrangeable graphs, which includes graphs with bounded maximum degree, planar graphs and graphs with no subdivision of Kp;
  • for subdivided graphs.

[edit] See also

[edit] References

  • N. Alon (1994). Subdivided graphs have linear ramsey numbers. J. Graph Theory 18(4), 343–347.
  • S.A. Burr and P. Erdős (1975). On the magnitude of generalized Ramsey numbers for graphs. Colloquia Mathematica Societatis Janos Bolyai 10 Infinite and Finite Sets 1, 214–240.
  • G. Chen and R.H. Schelp (1993). Graphs with linearly bounded Ramsey numbers, J. Combin. Theory Ser. B 57(1), 138–149.
  • V. Chvátal, V. Rödl, E. Szemerdi, and W.T. Trotter Jr. (1983). The Ramsey number of a graph with bounded maximum degree, J. Combin. Theory Ser. B 34(3), 239–243.
  • N. Eaton (1998). Ramsey numbers for sparse graphs, Discrete Maths 185, 63–75.
  • R.L. Graham, V. Rödl, and A. Rucínski (2000). On graphs with linear Ramsey numbers, Journal of Graph Theory 35, 176–192.
  • R.L. Graham, V. Rödl, and A. Rucínski (2001). On bipartite graphs with linear Ramsey numbers, Paul Erdős and his mathematics, Combinatorica 21, 199–209.
  • Yusheng Li, C.C. Rousseau, and L. Soltés (1997). Ramsey linear families and generalized subdivided graphs, Discrete Mathematics, 269–275.
  • V. Rödl and R. Thomas (1991). Arrangeability and clique subdivisions, The mathematics of Paul Erdős (R.L. Graham and J. Nešetřil, eds.), Springer, pp. 236–239.


This combinatorics-related article is a stub. You can help Wikipedia by expanding it.
Languages


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -