ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Beal's conjecture - Wikipedia, the free encyclopedia

Beal's conjecture

From Wikipedia, the free encyclopedia

Beal's conjecture is a conjecture in number theory proposed by the Texas billionaire and amateur mathematician Andrew Beal.

While investigating generalizations of Fermat's last theorem in 1993, Beal formulated the following conjecture:

If

 \left. A^x +B^y = C^z \right. ,

where A, B, C, x, y and z are positive integers with x,y,z > 2 then A, B, and C must have a common prime factor.

By computerized searching, greatly accelerated by aid of modular arithmetic, this conjecture has been verified for all values of all six variables up to 1000[1]So in any counterexample, at least one of the variables must be greater than 1000.

To illustrate, the solution 33 + 63 = 35 has bases with a common factor of 3, and the solution 76 + 77 = 983 has bases with a common factor of 7. Indeed the equation has infinitely many solutions, including for example

 \left[a \left(a^m + b^m\right)\right]^m + \left[b \left(a^m + b^m\right)\right]^m = \left(a^m+b^m\right)^{m+1}

for any a, b, m > 3. But no such solution of the equation is a counterexample to the conjecture, since the bases all have the factor am + bm in common.

It can happen that the exponents are pairwise coprime, as for example in 274 + 1623 = 97.

Beal's conjecture is a generalization of Fermat's last theorem, which corresponds to the case x = y = z. If ax + bx = cx with x \ge 3, then either the bases are coprime or share a common factor. If they share a common factor, it can be divided out of each to yield an equation with smaller, coprime bases. In either case, a counterexample to Fermat's Last Theorem would yield a counterexample to Beal's conjecture.

The conjecture is not valid over the larger domain of Gaussian integers. After a prize of $50 was offered for a counterexample, Fred W. Helenius provided (−2 + i)3 + (−2 − i)3 = (1 + i)4.[2] In this respect Beal's statement differs from Fermat's; given a specific small integer exponent, Fermat's Last Theorem tends to be true, and indeed easier to prove, in a suitable extension of the ring of integers than in the ring of integers alone.

Beal has offered a prize of US$100,000 for a proof of his conjecture or a counterexample[3].

[edit] References

  1. ^ Beal's Conjecture: A Search for Counterexamples
  2. ^ Neglected Gaussians
  3. ^ The Beal Conjecture

[edit] External links

Languages


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -