ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Asymptotická hustota - Wikipédia

Asymptotická hustota

Z Wikipédie

Asymptotická hustota je jedno spomedzi mnohých čísel udávajúcich, ako husto sú prvky danej podmnožiny prirodzených čísel rozprestrené v samotných prirodzených číslach. Presne je asymptotická hustota d(A) množiny A prirodzených čísel definovaná vzťahom

d(A) = \lim_{n\to\infty} \frac{A(n)}{n}

kde A(n)=\left|A\cap\{1,2,3,\ldots,n\}\right| je počet všetkých prvkov množiny A, ktoré sú menšie než prirodzené číslo n. Ak limita v tomto definujúcom vzťahu existuje, hovoríme, že množina A má asymptotickú hustotu. Nie všetky podmnožiny množiny prirodzených čísel majú asymptotickú hustotu.

Obsah

[upraviť] Horná a dolná asymptotická hustota

Horná asymptotická hustota podmnožiny A prirodzených čísel je číslo

\overline{d}(A) = \limsup_{n\to\infty} \frac{A(n)}{n}

zatiaľ čo jej dolná asymptotická hustota je

\underline{d}(A) = \liminf_{n\to\infty} \frac{A(n)}{n}.

Na rozdiel od asymptotickej hustoty, horná a dolná asymptotická hustota existuje pre každú podmnožinu prirodzených čísel. Je zrejmé, že množina má asymptotickú hustotu vtedy a len vtedy ak sa jej horná a dolná asymptotická hustota rovnajú.

[upraviť] Príklady

A = \bigcup_{n\in\mathbb{N}} \{n\in\mathbb{N}\,|\,2^{2n+1}-2^{2n-1}\le n \le2^{2n+1}\}.
  • O množine abundantných čísel sa vie, že má asymptotickú hustotu, zatial ale nie je známa jej presná hodnota. Vie sa iba toľko, že táto asymptotická hustota sa nachádza v intervale [0.2474,0.2480].

[upraviť] Vlastnosti

  • Ak množina A má asymptotickú hustotu, potom platí d(Ac) = 1 − d(A), kde Ac je komplement množiny A vzhľadom k množine prirodzených čísel.

[upraviť] Pozri aj

V iných jazykoch


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -