See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Лямбда-исчисление — Википедия

Лямбда-исчисление

Материал из Википедии — свободной энциклопедии

Ля́мбда-исчисле́ние (λ-исчисление, ламбда-исчисление) — формальная система, разработанная американским математиком Алонзо Чёрчем, для формализации и анализа понятия вычислимости.

λ-исчисление может рассматриваться как семейство прототипных языков программирования. Их основная особенность состоит в том, что они являются языками высших порядков. Тем самым обеспечивается систематический подход к исследованию операторов, аргументами которых могут быть другие операторы, а значением также может быть оператор. Языки в этом семействе являются функциональными, поскольку они основаны на представлении о функции или операторе, включая функциональную аппликацию и функциональную абстракцию.

Содержание

[править] Чистое λ-исчисление

Это простейший из семейства прототипных языков программирования, чистое λ-исчисление, термы которого, называемые также объектами (обами), или λ-термами, построены исключительно из переменных применением аппликации и абстракции. Изначально наличия каких-либо констант не предполагается.

[править] Аппликация и абстракция

В основу λ-исчисления положены две фундаментальные операции: аппликация и абстракция. Аппликация означает применение или вызов функции по отношению к заданному значению. Её обычно обозначают как f.a, где f — функция, а a — значение, или же просто как конкатенацию fa. Это соответствует общепринятой в математике записи f(a), которая тоже иногда используется, однако для λ-исчисления важно то, что f трактуется как алгоритм, вычисляющий результат по заданному входному значению. В этом смысле аппликация f к a может рассматриваться двояко: как результат применения f к a, или же как процесс вычисления fa. Последняя интерпретация аппликации связана с понятием β-редукции.

Абстракция или λ-абстракция в свою очередь строит функции по заданным выражениям. Именно, если t\equiv t[x] — выражение, свободно содержащее x, λx.t[x] обозначает функцию x\mapsto t[x]. Таким образом, с помощью абстракции можно конструировать новые функции. Требование, чтобы x свободно входило в t, не очень существенно — достаточно предположить, что \lambda x.t\equiv t, если это не так.

[править] β-редукция

Поскольку выражение \lambda x. 2\cdot x + 1 обозначает функцию, ставящую в соответствие каждому x значение 2\cdot x + 1, то для вычисления выражения

(\lambda x. 2\cdot x + 1) 3,

в которое входят и аппликация и абстракция, необходимо выполнить подстановку числа 3 в терм 2\cdot x + 1. В результате получается 2\cdot 3+1=7. Это соображение в общем виде записывается как

x.t)a = t[a / x],

и носит название β-редукция. Несмотря на то, что β-редукция по сути является единственной «существенной» аксиомой λ-исчисления, она приводит к весьма содержательной и сложной теории. Вместе с ней λ-исчисление обладает свойством полноты по Тьюрингу и, следовательно, представляет собой простейший язык программирования.

[править] Карринг

Функция двух переменных x и y f(x,y) = x + y может быть рассмотрена как функция одной переменной x, возвращающая функцию одной переменной y, то есть как выражение λxy.x + y. Такой приём работает точно также для функций любой арности. Это показывает, что функции многих переменных могут быть без проблем выражены в λ-исчислении и являются «синтаксическим сахаром». Описанный процесс превращения функций многих переменных в функцию одной переменной называется карринг (также: каррирование), в честь американского математика Хаскелла Карри, хотя первым его предложил М. И. Шейнфинкель (1924).

[править] Модели бестипового λ-исчисления

Применение бестипового λ-исчисления вызывало теоретические трудности, которые удалось преодолеть Д.С. Скотту. Им была разработана модель бестипового λ-исчисления [1], для чего предварительно была развита теория аппроксимационных решеток[2].

[править] См. также

[править] Ссылки

  1. Scott D.S. Lattice-theoretic models for various type-free calculi. -- In: Proc. 4th Int. Congress for Logic, Methodology, and the Philosophy of Science, Bucharest, 1972.
  2. Scott D.S. The lattice of flow diagrams.-- Lecture Notes in Mathematics, 188, Symposium on Semantics of Algorithmic Languages.-- Berlin, Heidelberg, New York: Springer-Verlag, 1971, pp. 311-372.

[править] Литература

  • Барендрегт X. Ламбда-исчисление. Его синтаксис и семантика: Пер. с англ. — М.: Мир, 1985. — 606 с.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -