See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Carré (algèbre) - Wikipédia

Carré (algèbre)

Un article de Wikipédia, l'encyclopédie libre.

Le carré d'un nombre est le résultat de la multiplication de ce nombre par lui-même. L'opération inverse du carré est la racine carrée.

Exemples :

  • 5² = 25
  • 1² = 1
  • 10² = 100
  • \sqrt{100} =  10

Sommaire

[modifier] Généralités sur le carré

Quand on multiplie un nombre au carré, on le multiplie par lui-même. Ainsi, les formes 12² et 12 x 12 sont équivalentes. Néanmoins on préfère la forme 12² autant que possible pour sa clarté et sa concision. Un carré est toujours positif pour tout nombre réel.

Exemple : 12² = (-12)² = 12 x 12 = -12 x (-12) = 144

Attention ! -(12²) et (-12)² sont deux nombres différents. Le premier vaut -144 (on multiplie 12 par 12 puis par -1) et le deuxième 144 (le - est englobé dans la parenthèse).

[modifier] La racine carrée

Comme on peut élever un nombre au carré, on peut aussi faire l'opération inverse. Cela s'appelle la racine carrée d'un nombre. Soit a un nombre positif, la racine carrée de a s'écrit : \sqrt a Il est important de préciser que a doit être positif. En effet écrire \sqrt{-a} par exemple reviendrait à dire que a² < 0 ce qui n'est pas possible dans l'ensemble des réels. Par contre, comme il est possible d'écrire -(12²) il est tout à fait possible d'écrire -\sqrt a

[modifier] Résoudre l'équation x² = a dans l'ensemble des réels

[modifier] Premier cas : a < 0

Lorsque a est strictement inférieur à 0, cela revient à dire que x² est négatif. Or dans l'ensemble des réels, le carré d'un nombre n'est jamais négatif. Donc : S = \empty

[modifier] Deuxième cas : a = 0

Lorsque a vaut 0, une seule solution est possible : 0 (puisque zéro n'a pas de signe). Donc : S = \left\{0\right\}

[modifier] Troisième cas : a > 0

Nous avons vu dans la partie précédente que 12² = (-12)² = 144. On peut réappliquer cette affirmation à l'équation x² = a. Ici l'équation a donc deux solutions : S = \left\{-\sqrt a ; \sqrt a\right\}

Remarque : résoudre \sqrt x = a

Si a est strictement négatif, l'équation n'a pas de solution. Donc : S = \empty

Par contre si a \ge 0 alors trouver x revient à multiplier a par lui-même, c'est-à-dire a².

[modifier] Notes et références de l'article

Source principale de cet article : cours de mathématiques niveau 3ème/2nde

[modifier] Voir aussi


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -