ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Varadhan's lemma - Wikipedia, the free encyclopedia

Varadhan's lemma

From Wikipedia, the free encyclopedia

In mathematics, Varadhan's lemma is a result in large deviations theory. The result gives information on the asymptotic distribution of a statistic φ(Zε) of a family of random variables Zε as ε becomes small in terms of a rate function for the variables.

[edit] Statement of the lemma

Let X be a regular topological space; let (Zε)ε>0 be a family of random variables taking values in X; let με be the law (probability measure) of Zε. Suppose that (με)ε>0 satisfies the large deviation principle with good rate function I : X → [0, +∞]. Let φ : X → R be any continuous function. Suppose that either one of the following two conditions holds true: either the tail condition

\lim_{M \to \infty} \limsup_{\varepsilon \to 0} \varepsilon \log \mathbf{E} \big[ \exp \big( \varphi(Z_{\varepsilon}) / \varepsilon \big) \mathbf{1} \big( \varphi(Z_{\varepsilon}) \geq M \big) \big] =  - \infty,

where 1(E) denotes the indicator function of the event E; or, for some γ > 1, the moment condition

\limsup_{\varepsilon \to 0} \varepsilon \log \mathbf{E} \big[ \exp \big( \gamma \varphi(Z_{\varepsilon}) / \varepsilon \big) \big] < + \infty.

Then

\lim_{\varepsilon \to 0} \varepsilon \log \mathbf{E} \big[ \exp \big( \varphi(Z_{\varepsilon}) / \varepsilon \big) \big] = \sup_{x \in X} \big( \varphi(x) - I(x) \big).

[edit] References

  • Dembo, Amir; Zeitouni, Ofer (1998). Large deviations techniques and applications, Second edition, Applications of Mathematics (New York) 38, New York: Springer-Verlag, xvi+396. ISBN 0-387-98406-2.  MR1619036 (See theorem 4.3.1)


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -