ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Catenoid - Wikipedia, the free encyclopedia

Catenoid

From Wikipedia, the free encyclopedia

A catenoid
A catenoid

A catenoid is a three-dimensional shape made by rotating a catenary curve around the x axis. Not counting the plane, it is the first minimal surface to be discovered. It was found and proved to be minimal by Leonhard Euler in 1744[1]. Early work on the subject was published also by Meusnier[2]. There are only two surfaces of revolution which are also minimal surfaces: the plane and the catenoid[3].

A physical model of a catenoid can be formed by dipping two circles into a soap solution and slowly drawing the circles apart.

Animation showing the deformation of a helicoid into a catenoid.  Generated with Mac OS X Grapher.
Animation showing the deformation of a helicoid into a catenoid. Generated with Mac OS X Grapher.

One can bend a catenoid into the shape of a helicoid without stretching. In other words, one can make a continuous and isometric deformation of a catenoid to a helicoid such that every member of the deformation family is minimal. A parametrization of such a deformation is given by the system

x(u,v) = \cos \theta \,\sinh v \,\sin u + \sin \theta \,\cosh v \,\cos u

y(u,v) = -\cos \theta \,\sinh v \,\cos u + \sin \theta \,\cosh v \,\sin u

z(u,v) = u \cos \theta + v \sin \theta \,

for (u,v) \in (-\pi, \pi] \times (-\infty, \infty), with deformation parameter -\pi < \theta \le \pi,

where θ = π corresponds to a right handed helicoid, \theta = \pm \pi / 2 corresponds to a catenoid, \theta = \pm \pi corresponds to a left handed helicoid,

[edit] References

  1. ^ L. Euler, Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, 1744, in: Opera omnia I, 24
  2. ^ Meusnier, J. B. "Mémoire sur la courbure des surfaces." Mém. des savans étrangers 10 (lu 1776), 477-510, 1785
  3. ^ Catenoid at MathWorld


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -