ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Bochner's theorem - Wikipedia, the free encyclopedia

Bochner's theorem

From Wikipedia, the free encyclopedia

In mathematics, Bochner's theorem characterizes the Fourier transform of a positive finite Borel measure on the real line.

Contents

[edit] Background

Given a positive finite Borel measure μ on the real line R, the Fourier transform Q of μ is the continuous function

Q(t) = \int_{\mathbb{R}} e^{-itx}d \mu(x).

Q is continuous since for a fixed x, the function e-itx is continuous and periodic. The function Q is a positive definite function, i.e. the kernel K(x, y) = Q(y - x) is positive definite; this can be checked via a direct calculation.

[edit] The theorem

Bochner's theorem says the converse is true, i.e. every positive definite function Q is the Fourier transform of a positive finite Borel measure. A proof can be sketched as follows.

Let F0(R) be the family of complex valued functions on R with finite support, i.e. f(x) = 0 for all but finitely many x. The positive definite kernel K(x, y) induces a sesquilinear form on F0(R). This in turn results in a Hilbert space

( \mathcal{H}, \langle \;,\; \rangle )

whose typical element is an equivalence class [g]. For a fixed t in R, the "shift operator" Ut defined by (Utg)(x) = g(x - t), for a representative of [g] is unitary. In fact the map

t \; \stackrel{\Phi}{\mapsto} \; U_t

is a strongly continuous representation of the additive group R. By the Stone-von Neumann theorem, there exists a (possibly unbounded) self-adjoint operator A such that

U_{-t} = e^{-iAt}.\;

This implies there exists a finite positive Borel measure μ on R where

\langle U_{-t} [e_0], [e_0] \rangle = \int e^{-iAt} d \mu(x) ,

where e0 is the element in F0(R) defined by e0(m) = 1 if m = 0 and 0 otherwise. Because

\langle U_{-t} [e_0], [e_0] \rangle = K(-t,0) = Q(t),

the theorem holds.

[edit] Applications

In statistics, one often has to specify a covariance matrix, the rows and columns of which correspond to observations of some phenomenon. The observations are made at points x_i,i=1,\ldots,n in some space. This matrix is to be a function of the positions of the observations and one usually insists that points which are close to one another have high covariance. One usually specifies that the covariance matrix Σ = σ2A where σ2 is a scalar and matrix A is n by n with ones down the main diagonal. Element i,j of A (corresponding to the correlation between observation i and observation j) is then required to be f\left(x_i-x_j\right) for some function f(\cdot), and because A must be positive definite, f(\cdot) must be a positive definite function. Bochner's theorem shows that f(.) must be the characteristic function of a symmetric PDF.

[edit] See also

[edit] References

  • M. Reed and B. Simon, Methods of Modern Mathematical Physics, vol. II, Academic Press, 1975.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -